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Two major, ~quarter-billion-$/Euro, x-ray FEL
devices dependent upon noise start-up

(1.e. SASE) are likely to be built by 2010
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SASE FEL “Topography”

Exponential gain regime;
fundamental spatial mode
becomes dominant; temporal
coherence steadily grows with z

while frequency content narrows

Saturation regime; temporal
coherence reaches maximum, then
decreases with z; peak of emission
moves redward (untapered wiggler);
strong coherent harmonic emission

Startup regime; spontaneous emission linearly
increasing with z; initially no temporal/spatial
coherence <= significant high order spatial
modes and broadband frequency content
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Simulation codes are extensively
used to design proposed x-ray FEL’s

 Many parameter choices, engineering specifications,
etc., for these devices have been and will be driven by
numerical simulation results

* The underlying simulation codes are non-trivial, both
in their algorithms and their software structure

This begs a fundamental, multi-M$ question:

Namely, to what degree of confidence should

we believe that these codes are giving
dependable answers?
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This talk comprise a personal selection of
topics touching on the confidence issue

* Basic FEL simulation algorithms:
— SVEA/wiggler-period averaging
— spatial mode limitations
* Spontancous emission/SASE start-up:
— macroparticle shot noise algorithms / harmonics
— comparison theory/code predictions
— transition from start-up to exponential growth regime
* Experimental/simulation code interface:
— LEUTL/GINGER
— TTF-FEL/FAST3D
— VISA/GENESIS
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Building blocks of a typical FEL code
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To model x-ray FELs, a code must make
several approximations to be practical

* Eikonal approximation (aka SVEA) :

— Radiation gain length, synchrotron wavelength, diffraction,
refraction, space charge scale lengths >> A, (“slow variation™)

— “Fast” time / z variation occurs within a relatively narrow
bandpass around a central (w,k) (modes with peak growth)

f(F,z,0)= f(F,z,t) exp i(k,z—,1)
— Hyperbolic EM eqns transformed to parabolic diffusion eqns

*Discrete radial grid = finite transverse mode number

—CPU speed, memory sizes limit grid resolution, dimensionality
(GINGER — 2.5D, FAST3D&GENESIS — 3D)

—Disk sizes, network speeds limit diagnostic storage
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Standard code approximations cont.

“Wiggler-period-averaged” source, dynamics equations
— forward radiation mode dominates

— small change in E over one wiggle period

— equivalent to eikonal approximation in beam frame

“PIC” representation of e- phase space
— finite macroparticle number, smoothed source

“Slippage” applied at discrete z intervals

— discrete temporal zoning =) finite # longitudinal modes

— numerically-limited frequency bandpass

Classical approx. = neglect of quantum effects

— # photons/mode >> 1

— recoil effects small: hv <<y mpc?

— GENESIS includes 6y increase from incoherent emission
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SVEA, wiggler-period averaging place limits on
temporal slicing of e-beam, radiation

Time-domain codes (e.g. GINGER, GENESIS, FAST3D) uniformly slice
the e-beam & radiation field temporally

« Slippage applied at discrete intervals 1n ¢,z with

slip
- Azy,, determines the width of the bandpass window A
around the central angular frequency o,

— neither the SVEA nor wiggler-period averaging apply to
frequencies near or beyond this value

* ForAzy;, /Ay, 2 O4) and L /Azg;, 2 O(8), SVEA and wiggler-
period averaging ~ OK for all wavelengths within the bandpass

slice

— minimum value for AZS

* However, limited A bandpass can present other difficulties...
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Example of unphysical aliasing + gain
suppression due to limited bandpass

LCLS parameters: 14.35 GeV, i

3400A, 1.2 mm-mrad, A,,=3 cm
FODO focusing lattice

K=3.71 chosen to give peak 1e407 |
FEL gain at 1.5000 nm 5 ,
Lgain -2.3m 5 10406 I
192 slices in time g _

Sllp =64cm >> 7‘ : 100000 |

Each run initialized with

1.0 kW / frequency bin 10000 |-

Center wavelength of

simulation bandpass varied 1000 | e

from 1.5000 to 1.5035 nm

1e+08 -

Central Wavelength 0.150 nm:
0.0 —+—
0.0010 ——
p.0020 ----g---
0.0025 ----m---
L — - um

-0.004

-0.003 -D.002 -0.001 0 0.001 0.002 0.003 0.004
Ofiset from Central Wavelength (nm)

Result: Gain unphysically drops by ~1.8X from bandpass center to edge
—> caution must be used when simulating e-beam energy chirp
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Wiggler-period averaging can break down
for higher order spatial modes

* High-order spatial modes (in 7 or x,y) have relatively
little gain but do suffer signiﬁcgmt diffraction:
0
ZpM|)~ 2y /ML
* Requiring mode diffraction length > A, equivalent to:

1/2 1/2
M < % L
L7\ A ) (44,

* For LCLS with f~18 m, M_;; ~ 12 and one expects few problems
for reasonable transverse grid resolution

e For DESY 70-nm with 3~1.0 m, M. it

* For VISA with ~0.27m, M .~ 1!
= coupling to “high”-order modes and fundamental probably
less accurately followed during start-up phase

~ 2.4 &5 possible problems



The Importance of Being Noisey...

* SASE is amplified shot noise
* Ergo, a code must load noise to be accurate/believable

H But

» One need not /cannot load all ~10'Y actual beam e-
— only small frequency portion of noise spectrum becomes
amplified, i.e. Aw/®y~ O(p) <<1

— similarly, causality & limited slippage 1solate most
temporal slices from one another

~10° macroparticles can accurately predict
the gross (and most fine) aspects of a SASE
FEL from start-up to deep saturation iff the
noise load algorithm 1s appropriately clever




Microbunching loading schemes

(Presumed) Poisson statistics gives ensemble-
averaged properties of moments of & (¥,p,7.¢)

Quuet start (e.g. bit-reversal) = microscopic 6D
noise-free distribution with minimal 15t —order
correlations between different coordinates

Most schemes load microbunching noise
in longitudinal position only
— §f moment fluctuations in other 5D
coordinates weakly couple to bunching, e.g.

Sh/b  ~. % 8 Ay
shot Lg ]\]f) p77

“Penman-McNeil” like-scheme: e~

» 00 assigned independent of 5D position
> extension: “clone” particles at 0, + «

Litvinenko scheme: e-,e+ pair at same 6D
location, 00 separation produces bunching

L=,

-
St =
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Variation in 3,=»possible harmonic problems

* [}, variation (0y, €) can cause unphysical
microbunching even 1n a drifting beam Q@4A  4B@

— partial suppression (Penman-McNeil
scheme) by greater clone #

— FAST3D applies “striping” correction
to global (y,0) distribution to eliminate Q1A @18
<(vy—Yy)" 0/ correlations

— higher harmonics most sensitive 0 0— 2n
, , , Later in z: Without clones,
 In strong gain regime, bunching at very strong bunching at
harmonic m coupled to (m=1) fundamental; with clones,

fundamental suppressed but

— 2m+1 clones at same [3, needed to _
strong bunching at cos 26

obtain proper growth of harmonic m

— 8-fold symmetry needed for 34 harmonic
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Beamlet loading scheme...

» GINGER, GENESIS divide each temporal slice into many
(~128-2048) individual beamlets,

— each beamlet has unique 1nitial 5D coordinate (x, y, p,, Py 7)
— each has 2M members, each with identical 5D coordinate

— members loaded in O with uniform separation of 7/M ;
= zero bunching for drifting beam through harmonics /-M

 For GINGER,
— SASE harmonics important (cascades, multi-A,, undulators)

— noise microbunching 60 distribution determined individually
for each beamlet j (see paper in July PRST-AB)

- SOij composed of sum of complex phasors over harmonics /-M,
— each beamlet harmonic follows negative exponential distribution

“* Note: effective # for shot noise statistics = # e- in total At interval
between adjacent slices, noft in just one wavelength
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GINGER simulation of spontaneous

emission in the very low gain regime

Power (W) & Intensity (MW/sr)

}\’W=2'5 cm, K=1 .414, AZSllp = }LW y
0.6
Total Power
05t -~

theoretical

simulation
04 | B

03}
theoretical

0.2t

01 ¢t

~simulation -

On-axis Far Field Intensity

0 0.2 0.4 0.6 0.8
Z (m)

> Excellent agreement in
far field intensity

> 5X discrepancy in total power

Parameters: 1g=1.0 A, y=500, A;=100 nm, g,=1 © mm-mrad (4ne/A = 0.25),
2048 macroparticles/slice*256 slices*8 runs

0.025

0.02

0.015

Power/bin (W)

0.01 r

0.005

0
94 96 98 100 102 104 106

Wavelength (nm)

» 0.19 W near-field power integrated

over 4% bandpass agrees with
0.21 W theory prediction




GINGER Simulation of Spontaneous
Emission Startup in LCLS

Parameters: std. LCLS --- 3400A, 14.35 GeV, 1.2 mm-mrad, 0.15 nm,

K=3.71, 4rne/A= 3.6; scan of spontaneous emission sensitivity to Az

Far Field On-axis Power (W/SR)
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far field intensity results:

- generally agrees within ~25%

- some sensitivity to Az,

= bandpass

Power (MW)
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total power results:
- >400X discrepancy theory/sim.

- stronger sensitivity to AZ;,

High order, non-axisymetric modes quite important in total power emission




Linear FAST simulation, analytic results
show contribution of high order modes

Results from Saldin et al., Opt.
Comm. 186 (2000), 1895.

- no energy spread or emittance,
Lg/Zg=1, 7 x 107 e- / A
- 3D linearized code FAST

<W>/( pW, )
=
B~

—
m
[
-]
ml

Radiation power vs z in gain
lengths for 3 lowest azimuthal [s= _ _
modes (each again summed : . 19 12 L
over lowest 3 radial modes);

lines=theory; dots=simulation

[4)]
[}

Transverse radiation profiles 5
across 1 temporal radiation =
slice at z/Lg=5 and 10

Courtesy M. Yurkov I D




GINGER “standard” LCLS example of noise
-> organized start-up -> exponential gain

Total power shows
development into
spikes by z-10 m

Normalized power
shows self-similar
spike propagation
[c-v;]~-2/3vV

slip

On-axis far field
radiation sub-c
spike propagation
evident earlier in z

Norm. bunching
shows self-similar
spike propagation

at vg > (vy)
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Nonlinear harmonic growth in the
SASE regime — GINGER / LEUTL example

Sim. parameters: 5t mm-mrad, | PEERERCEENLrELY gaﬁga“g

LEW-5ASEha

150 A, 519 nm, 219.5 MeV, 0
Ay=0.43, p - 2.1 x 1073 ; i :

32768 macroparticles/slice x

384 slices; 150 CPU hours split

over 64 IBM-SP4 processsors

Fundamental b1, b3 and b5 at z=13. 5m 0'2g

. KA
—13?50m T ] “[ {550 . REE
5 St

Bunching “snapshots” just before
saturation show usual spikiness;
spike width in bs, bs narrower
but not by 3,5 fold




Highlights of 3 simulation/expt. efforts

(1) LEUTL/GINGER (2) TTF-FEL/FAST3D
(3) VISA/GENESIS

e Common features:

— Beam compressor = complicated 5D phase space
— Short pulse effects important

— Pulse-to-pulse machine repeatibility fair-to-poor
* Common prediction successes:
— L P, z

gaiw ~ sat’ “sat

— Opwru

— E u1se> Pulse-to-pulse output statistics (TTF, VISA)
— Harmonic content (LEUTL, VISA)
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GINGER modeling of APS LEUTL results

108 |

LEUTL Experiment: 105 | A
beam charge~0.3 nc ol
each dot =100 shots 102 | ggg Rm
error bar 25-75th percentile 18; : 85 mm-mrad
Pulse length in Case B purposely 1071 0.19ps
increased to prevent saturation = 18‘; IE | |
: : 2 10°
GINGER Simulation: S 107 530 nm
: : . 2 o 171 A
- simple Gaussian 5D distributions S 180 8.5 mm-mrad
- energy spread o slightly adjusted | S 07 orres
from nominal value for better fit 105 |C s
-output energy normalized for oy
exact overlap at z=5 m 102 | %”gg am
- each solid line = 50 GINGER o g-ésmm-mrad
short pulse SASE runs with 107 | 09 PS
different random # seeds . : 0 15 o 2

Courtesy Z. Huang - APS Distance [m]




FAST3D modeling of 100-nm TTF-FEL

I
2561 T e 100
1 I 60—- @70 0 i
254- 2 | FAST3D, \ 10
g 252' . !°° 40 ’: _1 3
e 1 ] :l w
W : , o 304 , N 104
250 - : 20, ; o |
. I he) v of
1 I 10' *~£0.01
248 - . " ] s 8o 8 G
: : ; : : : 0.0 I o 1E-3
-15 -10 -5 0 i 0 2 4 6 8 10 12 14
t [ps] I z [m]

Results published in Ayvazyan et al., PRL, 88, 104802 (11 Mar 02)
- Key conclusion is emission comes from 1.3-kA current spike
produced by bunch compressor (VISA-like)

- Experimental measurement of L, output power fluctuations,
spectral width gives independent value for I, Tpy P

- FAST3D modelers found excellent agreement (including
angular distribution) using Ig =1.3 kA, Gaussian profile with
FWHM=120 fs, 6E=100 KeV, € = 6t mm-mrad



VISA electron beam properties
reconstructed and input to GENESIS code

Beam Parameters at Bunch Length at Undulat
Undulator Entrance
B Measurements
Energy 71 MeV 0.015 g—r—SlmuIatlons A
Spread 0.1 % % 0.01 ;
Peak Current 250 A 2 e |
= 0.005 - ]
Emittance 2.3 °
(projected) mmmrad R 2
Undulator
period 1.8 cm Predicted Current Profile
Undulator 083 sso - ] Initiol
. Final
parameter ’;; 200| ]
Wavelength 850 nm =150
% 100]
PARMELA + EEEGFN' mpcfor ':> 3 sl
504 0 ( )5x1'o-4
Location (m
Courtesy S. Reiche - UCLA




Comparison of GENESIS simulation
and VISA experimental results

GENESIS simulation shows excellent
agreement with experimental results:

» Power growth (including saturation)

e Spectrum + bandwidth (not shown here)
e (Fluctuations - insufficient # sim. runs)

eNear & far field spatial mode distribution

102 —— simulations
® measurements

10"
10°
107
1072
10
10

SASE Intensity [uJ]

10°
10° Lo

Courtesy S. Reiche - UCLA

Far Field (Measurement)

Bx [mrad]

Far Field (Simulation)




Different individuals will have differing perspectives
on the present robustness of x-ray FEL modeling

» From microwave to infrared to far UV
wavelengths, simulation codes have had
good success 1n reproducing gain lengths,
effective start-up and saturation power,
far field angle, efc., for SASE-based FEL’s

» A critical factor is good knowledge of beam
parameters, including 6D phase space

» Undoubtedly, there will be some surprises
in the 4- to 0.15-nm region

» However, funding decisions often also have
a surprisingly random component...



Different individuals will have differing perspectives
on the robustness of x-ray FEL modeling

[ wonder if
this means I can

get OMB to license
SDDS format for the
2004 budget...

A

{{ere Mr. President yob

can see the conservative
predictions of our very

\ELEGAN T' modeling. -

for a gizmo in a state
I'lost by 11% in 2000;
I wonder what Karl R.
o\ will advise me about
: this one...

PS control room, 22 July 2002
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